Friday, 25 September 2020
Facebook
Twitter

Suomalaistutkimus löysi kansalaistieteen avulla uuden revontuli-ilmiön – ”Revontulidyynit” syntyvät huonosti tunnetussa ”ignorosfäärissä” 100 kilometrin korkeudessa

Suomalaiset revontuliharrastajat ovat löytäneet yhdessä avaruustutkijoiden kanssa uuden revontulimuodon, Helsingin yliopisto tiedottaa.

Harrastajat ovat nimenneet uuden revontulimuodon ”dyyniksi”. Dyynit ovat todennäköisesti noin sadan kilometrin korkeudessa hyökyviä happiatomien aaltoja, jotka auringosta purkautuva hiukkasten virta saa loistamaan.

Keskiviikkona julkaistussa tutkimuksessa dyynin synty jäljitetään ”aaltokanavaan”, joka syntyy ilmakehän mesosfäärin ja sen rajan eli mesopaussin yhteyteen. Tutkimuksessa myös ehdotetaan, että uuden revontulimuodon avulla pystytään tutkimaan yläilmakehän olosuhteita uudella tavalla.

AURINGOSTA VIRTAA tasainen varauksellisten hiukkasten virta eli aurinkotuuli. Saavuttaessaan ionisoituneen ilmakehän osan (ionosfäärin) aurinkotuuli virittää happi- ja typpiatomeita korkeampaan energiatilaan. Viritystilojen purkautuminen näkyy revontulivalona.

Dyyni tunnistettiin Helsingin yliopiston laskennallisen avaruusfysiikan professori Minna Palmrothin kirjassa Revontulibongarin opas esiintyviä tuhansia revontulia luokitellessa.

Kukin revontulimuoto on kuin sormenjälki, tyypillinen juuri tietylle revontulivyöhykkeen fysikaaliselle tapahtumalle. Revontuliharrastajat huomauttivat luokittelussa, että eräälle revontulimuodolle ei löytynyt sopivaa kategoriaa. Niinpä Palmroth jätti nämä epätavalliset muodot myöhempää ajankohtaa varten.

Lähes uskomaton yhteensattuma tapahtui, kun pari päivää kirjan julkaisemisen jälkeen kirjan työryhmässä mukana olleet revontuliharrastajat sattuivat näkemään tämän itselleen jo tutun revontulimuodon. Harrastajat ilmoittivat siitä välittömästi Palmrothille. Revontulissa näkyi vihertävä, tasainen aaltokuvio, kuin raidallinen pilviharso tai dyynit hiekkarannalla.

”Yksi yhteisen tutkimustyön ikimuistoisimpia hetkiä oli, kun ilmiö tuli tuolloin näkyviin ja pääsimme reaaliajassa sen kimppuun”, tähtitieteen harrastaja Matti Helin kuvailee.

ALKOI ILMIÖN selvitystyö, jossa harrastajien tekemät havainnot ja tieteelliset menetelmät linkittyivät vuorotellen. Helinin sanoin projekti oli kuin palapelin kokoamista tai salapoliisityötä.

”Joka päivä löytyi uusia kuvia, uusia ideoita. Ja lopulta ilmiö avautui”, hän kertoo.

Ilmiö kuvattiin samaan aikaan sekä Laitilasta että Ruovedeltä, ja molemmissa kuvissa revontulimuodossa havaittiin sama yksityiskohta. Maxime Grandin, tutkijatohtori Palmrothin ryhmästä tunnisti tähdet muodon takaa, ja niiden suunta ja korkeus saatiin selville planetaario-ohjelman avulla.  Tämän jälkeen tähtiä voitiin käyttää viitepisteinä ilmiön korkeuden ja laajuuden laskemisessa.

Grandin laski, että revontulidyynit ovat melko matalalla, noin sadan kilometrin korkeudessa mesosfäärin yläosassa. Aaltokentän aallonpituudeksi saatiin 45 kilometriä.

Vastaavia tapahtumia, joissa kamera oli tallentanut saman tasaisen aaltokuvion, löytyi Ursan ylläpitämästä Taivaanvahti-havaintotietokannasta seitsemän.

SE REVONTULIVYÖHYKKEEN osa, missä maan sähköisesti neutraali ilmakehä kohtaa avaruuden alaosan, on laitteille ja satelliiteille erittäin haastava ympäristö. Siksi se onkin Palmrothin mukaan yksi planeettamme vähiten tutkituista paikoista.

”Joskus tätä aluetta noin 80:n ja 120 kilometrin välisellä korkeudella kutsutaan ignorosfääriksi, koska siellä esiintyviä ilmakehän ilmiöitä on niin vaikea mitata”, Palmroth toteaa.

Dyynit näkyivät juuri tuolla revontulivyöhykkeen alueella. Ilmiö vei tutkijat ilmakehä- ja avaruustutkimuksen välimaastoon, sillä ilmiötä ei pystytty selittämään pelkin tutuin avaruusfysiikan tutkimiskeinoin.

”Dyynin laineitten valoisuuserot saattoivat johtua joko aaltoilusta ionosfääriin satavien elektronien vuossa tai ilmakehän happiatomien tihentymistä”, Palmroth kuvaa.

”Kallistuimme ehdottamaan, että dyynit johtuvat happiatomien tihentymistä.”

Seuraavaksi piti selvittää, miten ilmakehän painovoima-aalloista johtuvat happiatomien tihentymät ja harventumat muodostavat niin tasaisen ja laajalle levinneen aaltokentän. Normaalisti tuolla korkeudella on monenlaisia eri suuntiin ja eri aallonpituudella kulkevia painovoima-aaltoja, eivätkä ne siksi helposti muodosta dyynien kaltaista tasaista aaltokenttää.

TUTKIMUS EHDOTTAA, että kyse on mesosfäärissä tapahtuvasta harvinaisesta ja vähän tutkitusta ilmiöstä, happiatomien vuoksiaallosta, jota kutsutaan englanniksi termillä ”mesospheric bore”.

Vuoksi-ilmiön aiheuttama aalto on yleinen monissa joissa, missä vuorovesi nousee joen muodostamaa kanavaa pitkin. Suomessa ilmiötä ei havaita, ja siksi tällaisille aalloille ei ole kehittynyt hyvää suomenkielistä vastinetta.

Ilmakehässä on erilaisia painovoima-aaltoja, jotka nousevat ylöspäin. Hyvin harvinaisissa tapauksissa painovoima-aalto suodattuu noustessaan mesopaussin ja sen alapuolelle satunnaisesti muodostuvan inversiokerroksen väliin. Tällöin tietyn aallonpituuden aallot taittuvat ja voivat kulkea aaltokanavassa pitkiä matkoja vaimentumatta.

Kun vuoksiaaltojen happiatomit joutuvat ilmakehään satavien elektronien tielle, aaltojen happiatomit virittyvät ja virityksen purkautuessa päästävät revontulivaloa. Niinpä mesosfäärin vuoksiaallot, joita on pidetty erittäin vaikeasti tutkittavana ilmiönä, voikin joskus nähdä jopa paljain silmin.

VUOKSIAALTOA EI OLE aiemmin havaittu revontulialueella, eikä näitä aaltoja ole tutkittu revontulien avulla.

”Itse asiassa koko revontulialue on yleensä poistettu aaltotutkimuksista, koska revontulet häiritsevät mesosfäärin vuoksiaaltojen tunnistusmenetelmää”, Palmroth kertoo.

Perinteisesti ilmakehän ja avaruuden tutkijat ovat tutkineet kohteitaan melko erillään toisistaan, sillä elektronisateessa kylpevällä ionosfäärillä ja neutraalilla ilmakehällä on vain muutama tunnistettu vuorovaikutusmekanismi.

Ilmatieteen laitoksen mittalaitteiden avulla havaittiin dyynien esiintyvän samanaikaisesti ja samassa paikassa, kuin missä ylempää avaruudesta tullut sähkömagneettinen energia siirtyy ignorosfääriin.

Linkki

Kommentoi

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *